Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Stefan Scholz, Hans-Wolfram Lerner and Michael Bolte*

Institut für Anorganische Chemie, J.-W.-GoetheUniversität Frankfurt, Marie-Curie-Strasse 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.020 \AA$
R factor $=0.057$
$w R$ factor $=0.126$
Data-to-parameter ratio $=14.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Carbonatobis(triphenylphosphine)platinum(II) benzene solvate: a redetermination

The title compound, $\left[\operatorname{Pt}\left(\mathrm{CO}_{3}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right] \cdot \mathrm{C}_{6} \mathrm{H}_{6}$, has previously been reported by Cariati, Mason, Robertson \& Ugo [Chem. Commun. (1967), p. 408]. However, no coordinates were published. We present here a redetermination of this structure using new intensity data. The Pt atom shows a distorted square-planar coordination. It carries two PPh_{3} residues and is chelated by a carbonate ion.

Comment

Earlier studies have shown that tris(triphenylphosphine)platinum does not react with carbon dioxide in the absence of oxygen; however, in the presence of O_{2}, a rapid reaction occurs (Nyman et al., 1967). We have found that tetrakis(triphenylphosphine)platinum reacts in $\mathrm{C}_{6} \mathrm{D}_{6}$ with air to give carbonatobis(triphenylphosphine)platinum(II), (I), as shown in the reaction scheme below.

(I)

The crystal structure of (I) has already been reported by Cariati et al. (1967). However, these authors did not publish any coordinates. We report here the X-ray crystal structure analysis of (I) using new intensity data. A perspective view of the title compound is shown in Fig. 1. Bond lengths and angles can be regarded as normal (Cambridge Structural Database, Version 5.27, November 2005; MOGUL Version 1.0; Allen, 2002). The coordination of the Pt atom is distorted square planar, with an r.m.s. deviation of $0.024 \AA$ for atoms $\mathrm{Pt} 1 / \mathrm{P} 1 / \mathrm{P} 2 /$ $\mathrm{O} 1 / \mathrm{O} 2$. The two $\mathrm{Pt}-\mathrm{O}$ bonds are almost the same length, but the $\mathrm{Pt}-\mathrm{P}$ bonds differ by $0.037 \AA$ (Table 1). The O atom that is not bonded to Pt shows a significantly shorter $\mathrm{C}-\mathrm{O}$ bond than the coordinated O atoms. The compound crystallizes with one molecule of benzene in the asymmetric unit.

Experimental

Colourless crystals of the title compound were obtained by storing a solution of $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pt}(0.021 \mathrm{~g}, 0.016 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}(0.7 \mathrm{ml})$ in air for several days at room temperature.

Received 9 January 2006
Accepted 12 January 2006

Crystal data

$\left[\mathrm{Pt}\left(\mathrm{CO}_{3}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right] \cdot \mathrm{C}_{6} \mathrm{H}_{6}$
$M_{r}=857.75$
Triclinic, $P \overline{1}$
$a=10.594(2) \AA$
$b=12.512(2) \AA$
$c=15.195(2) \AA$
$\alpha=85.15(1)^{\circ}$
$\beta=71.34(1)^{\circ}$
$\gamma=70.91(1)^{\circ}$
$V=1802.9(5) \AA^{3}$
$Z=2$
$D_{x}=1.580 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 12395 reflections
$\theta=2.1-25.2^{\circ}$
$\mu=4.02 \mathrm{~mm}^{-1}$
$T=100$ (2) K
Cut needle, colourless
$0.11 \times 0.08 \times 0.04 \mathrm{~mm}$

Data collection
Stoe IPDS-II two-circle diffractometer
ω scans
Absorption correction: multi-scan
(MULABS; Spek, 2003; Blessing, 1995)
$T_{\text {min }}=0.666, T_{\text {max }}=0.856$
21885 measured reflections

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.126$
$S=0.95$
6408 reflections
442 parameters

Figure 1
A view of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted.
$0.95 \AA$). The largest peak in the differnce Fourier is located $2.01 \AA$ from atom H15. We attribute the unusual displacement ellipsoids of C26 and C51 to an inadequate absorption correction. The deepest hole is located $1.60 \AA$ from atom H72.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: $X-A R E A$; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97 and PLATON.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Cariati, F., Mason, R., Robertson, G. B. \& Ugo, R. (1967). Chem. Commun. p. 408.

Nyman, C. J., Wymore, C. E. \& Wilkinson, G. (1967). Chem. Commun. p. 407. Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

